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DEPENDENCE OF SURFACE CONDUCTrVITY OF SODIUM CHLORIDE 

ON THE CHEMICAL NATURE OF THE SURFACE 

by Charles E. May and John P. Jayne 

Lewis Research Center 

SUMMARY 


The surface conductivity S of sodium chlor ide w a s  measured near room 
temperature as a function of t he  p a r t i a l  pressure of water vapor P, absolute  
temperature T (over a 20' range) ,  and surface treatments.  For a l l  specimens, 

l og  s = l og  so + -a' where So i s  t h e  extrapolated value of sur face  conduc-T-ll' 
t i v i t y  a t  zero water pressure and at i s  a propor t iona l i ty  constant.  The 
value of a' f o r  t r e a t e d  surfaces  i s  i n  general  about 40 percent grea te r  
than the  value f o r  as-cleaved surfaces.  The values of SO vary as follows: 

So (deuteroxide surface)  > So (hydroxide surface)  >> SO (carbonate surface)  

, 
, so (compact) >> so (melt-grown s ing le  c r y s t a l )  >- so (na tu ra l  c r y s t a l )  

~ 


I The work confirms the  existence of hydroxide and carbonate groups on the  sur
face of sodium chlor ide.  

INTRODUCTION 

Recent work ( r e f s .  1 t o  4) has shown t h a t  even a t  room temperature, chem
i c a l  reac t ions  occur on the surface of sodium chlor ide ( N a C 1 )  when exposed t o  
ce r t a in  gases. When N a C l  i s  exposed t o  water ( H 2 0 )  vapor, hydrolysis occurs; 
when exposed t o  moist carbon dioxide ( C O z ) ,  amounts of carbonate (or bicarbon-

L a t e )  equivalent t o  a monolayer can be formed. Such a coverage by carbonate (or 
bicarbonate)  should have a la rge  e f f e c t  on surface propert ies ,  p a r t i c u l a r l y  
surface conductivity.  

The purpose of t h i s  inves t iga t ion  w a s  t o  search f o r  such an e f f e c t  because 
i t s  exis tence would subs t an t i a t e  t he  presence of t he  carbonate l aye r  as wel l  as 
increase our understanding of surfaces.  Fortunately,  t he  room temperature sur
face conduct ivi ty  of some ionic  c r y s t a l s  ( inc luding  N a C 1 )  i s  r e l a t i v e l y  high i n  
the  presence of H20 vapor ( r e f s .  5 t o  8) .  Moreover, t he  bulk conduct ivi ty  of 
N a C l  i s  negl ig ib le  a t  room temperature. Thus, conditions a r e  favorable f o r  t h e  
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desired measurements. 

The scope of t h i s  work includes t h e  determination of t h e  sur face  conduc
t i v i t y  of various N a C l  samples as a funct ion of t h e  par t ia l  pressure of water 
vapor, temperature, and sur face  treatments. 

The 13 N a C l  samples inves t iga ted  were of 4 types:  melt-grown s i n g l e  crys
tals ( o p t i c a l  grade),  na tu ra l ly  occurring s i n g l e  c rys t a l s ,  compacted powders 
(ground from melt-grown c r y s t a l s ) ,  and compacted granules ( reagent  grade) .  The 
compacts were made a t  room temperature ( r e f .  9 )  by hydros t a t i c  pressing (50 000 
p s i ) .  The s ing le  c r y s t a l s  were cleaved rectangular  s o l i d s  (ranging from 3 to 
10 mm on a s ide )  while t h e  compacts were i n  t h e  form of cyl inders  (roughly 
13  mm i n  diameter and from 4 t o  9 mm t h i c k ) .  

Conduct ivi t ies  were determined f o r  t h e  as-cleaved (and as -cu t )  specimens 
as well  as f o r  t h e  specimens after various chemical sur face  treatments.  The 
treatments included (1)exposure to t h e  vapor from 12 normal hydrochloric ac id  
(HC1)  f o r  about 100 hours (air present ) ,  ( 2 )  exposure to 100 percent H20 humid
i t y  f o r  about 10 minutes ( i n  conductivity c e l l ,  air  absent) ,  (3) exposure t o  
C02 at 60 percent humidity f o r  about a day (air  present ) ,  and (4 )  exposure t o  
100 percent deuterium oxide (D20) humidity f o r  about 10 minutes ( i n  conductiv
i t y  c e l l ,  a i r  absent) .  Treatment (4 )  w a s  used only on specimen 14; fu r the r 
more, i n  connection with such D20 treatments,  D20 w a s  also used as t h e  vapor 
during some of t h e  conductivity determinations. 

The apparatus shown schematically i n  f i g u r e  1 proved t o  be adequate f o r  
a l l  t h e  measurements. The specimen w a s  held i n  a g l a s s  vacuum chamber between 
two f l a t  platinum contacts,  t h e  lower one being spr ing  loaded. Stopcocks per
m i t t e d  t h e  chamber to be i s o l a t e d  from an adjoining manometer, water reservoi r  
(properly degassed), and vacuum pump. The temperature of t h e  specimen could be 
var ied s l i g h t l y  through t h e  use of a heat ing tape; t o  prevent in te r fe rence  with 
conductivity measurements, an i s o l a t i o n  transformer w a s  required with it. "he 
difference between t h e  specimen temperature and room temperature w a s  measured 
with a thermocouple i n  c lose proximity to t he  c r y s t a l  (<5 mm).  Contact be
tween t h e  specimen and thermocouple was found to i n t e r f e r e  with conductivity 
measurements. 

The chamber with t h e  specimen i n  pos i t ion  w a s  i n i t i a l l y  evacuated to about 
0.01 t o r r  and degassed overnight. Water vapor was then admitted and t h e  system 
allowed to stand about 30 seconds to ensure equilibrium. The pressure w a s  then 
read with t h e  a i d  of a cathetometer, and t h e  conductivity w a s  measured as f o l 
lows. A known po ten t i a l  ( 1 . 3 5 - V  mercury c e l l )  i n  s e r i e s  with a standard pre
c i s ion  high r e s i s t ance  (lO1O ohms) w a s  placed across  t h e  specimen. The poten
t i a l  across t h e  standard r e s i s t ance  w a s  then measured with a v ibra t ing  reed 
electrometer s o  t h a t  t h e  current ,  voltage drop across  t h e  sample, and f i n a l l y  
t h e  conductivity of t h e  sample could- be calculated.  The en t i re  system had t o  
be w e l l  shielded and grounded as indica ted  i n  f igu re  1. The range of  measure-
ab le  conduct ivi t ies  w a s  from about t o  10-l' mho. By multiplying the  
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measured conduct iv i t ies  by t h e  r a t i o  of sample length  t o  perimeter, t h e  spe
c i f i c  sur face  conduct iv i t ies  were obtained. 

Af te r  t h e  i n i t i a l  measurement, more water vapor w a s  admitted, and t h e  
pressure and conductivity were remeasured. The process w a s  continued so as t o  
obta in  a run of about 8 experimental points  over t h e  measurable range of con
duc t iv i t i e s .  The temperature w a s  measured t o  +0.lo and appeared t o  be essen
t i a l l y  constant during a run. The chamber w a s  reevacuated, and another run of 
8 poin ts  w a s  obtained. The first two runs were done a t  about 23O C. For most 
of the samples, the measurements were repeated a t  about 30' C and again at  
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about 39' C. I n  none of t h e  measurements w a s  any evidence of po lar iza t ion  of 
t h e  c r y s t a l s  detected. It should a l s o  be noted t h a t  t h e  value of t h e  p a r t i a l  
pressure of water over a sa tu ra t ed  so lu t ion  of N a C l  w a s  never exceeded during 
a run; thus,  condensation of water on t h e  specimen w a s  prevented. 

Preliminary experiments were performed t o  subs t an t i a t e  t h a t  t h e  conductiv
i t y  measured w a s  t r u l y  due t o  t h e  surface.  I n  these,  a continuous narrow band 
of  insu la t ing  p l a s t i c  material w a s  painted around a s i n g l e  c r y s t a l  e s s e n t i a l l y  
p a r a l l e l  t o  t h e  contact ends and allowed t o  dry; t h i s  e l e c t r i c a l l y  i s o l a t e d  t h e  
two halves of t h e  surface.  Then the conductivity of the c r y s t a l  w a s  measured 
perpendicular t o  t h e  band a t  H20 vapor pressures from 0 t o  18 t o r r .  The f a c t  
t h a t  no conductivity w a s  measurable even at 18 t o r r  ind ica tes  t h a t  any conduc
t i v i t y  measured f o r  crystals without insu la t ing  bands must be due t o  sur face  
conductance. 

DATA HANDLING 


Before t h e  e f f e c t  of sur face  treatments can be discussed i n  d e t a i l ,  it i s  
necessary t o  a sce r t a in  t h a t  the e f f e c t s  noted are not due t o  o ther  variables, 
such as pressure and temperature. For t h e  13 specimens t e s t ed ,  no conductivity 
w a s  observable ( U O - I 4  mho) a t  0- tor r  water vapor pressure;  however, when 
s u f f i c i e n t  H20 pressure w a s  present ,  t h e  conductivity could be measured. It 
should be noted t h a t  t h e  attainment of a constant conductivity reading w a s  al
most instantaneous,  and thus t h e  e f f e c t  of any possible  d i f fus ion  of HzO i n t o  
t h e  bulk i s  shown t o  be negl igible;  t h i s  i s  addi t iona l  evidence t h a t  t h e  con
ductance i s  tak ing  place on t h e  surface.  

The dependence of the s p e c i f i c  surface conductivity sP[tl on the  vapor 
pressure of w a t e r  P i s  shown i n  f igu re  2 and can be expressed as follows: 

l og  sp[ t l  = l og  so f a [ t ]  . P 

where log  So and a [ t l  are t h e  in t e rcep t  and slope, respect ively.  Such a 
dependence i s  t y p i c a l  of all 13 specimens invest igated.  I n  appendix A, t h e  
s ign i f icance  of equation (1)is  discussed. Using t h e  least squares method, 
t h e  ind ices  of co r re l a t ion  of t h e  th ree  curves i n  f i g u r e  2 are 0.9997 f o r  
24.5' C y  0.9998 for 32.0' C y  and 0.9957 f o r  41.5' C. Simkovich (ref. 8) c l a i m s  
t h a t  l o g  S f o r  N a C l  i s  proport ional  t o  log  P; however, w e  found by re-
p lo t t i ng  h i s  d a t a  ( f ig .  5 of ref.  8) t h a t  equation (1)y i e l d s  a s l i g h t l y  bet ter  
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f i t  than t h e  equation t h a t  Simkovich proposes. 

As i l l u s t r a t e d  i n  f i g u r e  2, t h e  s lope decreases rap id ly  with increasing 
temperature. I n  f i g u r e  3, t h e  value of t h e  s lope a r t ]  i s  shown to be in
versely proportional to roughly t h e  t e n t h  power of t h e  absolute  temperature T. 
The average value of t h i s  power from all t h e  temperature dependency determina
t i o n s  w a s  11.422.8. Thus, equation (1)can be reexpressed roughly as follows: 

at Plog  $1 = log  so + -
T l l  

where at  i s  temperature independent. This rec iproca l  power dependence (even 
though t h e  power var ied somewhat) i s  a b e t t e r  representat ion of t h e  da ta  than 
t h e  usual type of temperature expressions (i.e. , a [ % ]= -BT o r  I n  a [ t ]  
= I n  a. + B/T where a. and B a r e  constants).  Although appendix A ind i 
ca tes  t he re  may be some t h e o r e t i c a l  s ignif icance t o  the  form of t h e  pressure 
dependence, t h e  form found f o r  t h e  temperature dependence seems t o  be merely 
empirical. However, t h e  r e l a t ionsh ip  found does allow aCtJ to be corrected 
very adequately f o r  s l i g h t  changes i n  temperature (appendix B);  t h i s  w a s  t h e  
primary purpose i n  determining t h e  dependence on temperature. Referring again 
t o  f igure  2, t h e  in t e rcep t  ( log  SO) can be seen to be e s s e n t i a l l y  independent 
o f  temperature over t h e  small . range (about 20' C )  invest igated.  The least 
squares method gives the  following values f o r  log  So i n  f igu re  2:  -19.65 f o r  
24.5' C y  -19.41 for 31.2' C y  and -19.69 f o r  41.5' C. 

The surface treatments had a de tec tab le  e f f e c t  on t h e  s lope a t  23' C y  4 2 3 1  
( t a b l e  I; method of ca lcu la t ion  i n  appendix B); however, t h e  e f f e c t s  were not 
consis tent  with t h e  type of treatment. Thus, t h e  e f f ec t s  must be a t t r i b u t e d  to 
changes i n  t h e  surface o ther  than those of a chemical nature  (e.  g. , t h e  growth 
of s m a l l  c r y s t a l l i t e s  observed on s ing le  c rys t a l s  a f t e r  t reatments) .  One gen
e r a l i t y ,  however, could be made: t h e  values of a[231 f o r  as-cleaved (and as-
cut) samples were cons is ten t ly  lower than t h e  average value of a [231  f o r  all 
treatments ( t a b l e  11). The roughly 40 percent increase i n  t h e  value of' a[231 
with treatment can be a t t r i b u t e d  a l s o  to t he  exis tence of these  c r y s t a l l i t e s  on 
t h e  surfaces because they could contr ibute  to t h e  sho r t  c i r c u i t  mechanism dis 
cussed i n  appendix A. It should be noted t h a t  t h e  value of cc[231 f o r  a l l  as-
cleaved (and as-cut)  samples i s  e s sen t i a l ly  a constant. 

The ac tua l  conductivity,  however, shows a dependence on t h e  type of sur 
face  treatment ind ica t ing  t h a t  a chemical e f f e c t  i s  involved. I n  f igu re  4, t h e  
e f f e c t  of HC1 on a melt-grown c r y s t a l  i s  i l l u s t r a t e d ;  conductivity i s  enor
mously increased with t h e  treatment. I n  f igu re  5, t h e  e f f e c t  of C 0 2  i s  shown; 
conductivity i n  general  i s  decreased s l igh t ly .  For ease of comparing all t h e  
data, one can make use of t h e  value log S-$31 t h e  logarithm of t h e  conductiv
i t y  a t  23O C y  and 10-torrH20 vapor pressure ( t a b l e  111; method of calculat ion 
i n  appendix B).  

As  t h e  da t a  i n  t a b l e  I11 i s  discussed, t h e  following gene ra l i t i e s  w i l l  
become apparent : 
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For melt-grown crystals, 

[231(H2O t r e a t e d )  S1o c231 (as cleaved) > S10[231(HC1 t r e a t e d )  >> S1o [231(C02 t r ea t ed )  

For na tu ra l  s i n g l e  c rys t a l s ,  

(H20 t r e a t e d )  S1E3 (HC1 t r e a t e d )  Ski3 (as cleaved) >> S!g3 (C02  treat ed) 

$ For compacts, 
5 0[23 (H20 t r e a t e d )  S!i3 (HC1 t r ea t ed )  (C02 t r ea t ed )  > Sfg3 (as cleaved) 

' 

The order  i n  which treatments were ca r r i ed  out had l i t t l e  e f f e c t  on t h e  re
s u l t s ,  except t h a t  a f t e r  many treatments, specimens sometimes f a i l e d  t o  show 
t h e  expected e f f e c t  ( p a r t i c u l a r l y  f o r  specimen 18). For s impl ic i ty  of d i s 
cussion of t h e  data,  t h e  i n i t i a l  treatments w i l l  be discussed first. 

The e f f e c t  of HC1 on as-cleaved melt-grown c rys t a l s  ( increase  i n  conduc
t i v i t y )  can be seen f o r  specimens 10, 11, 13, and 15 ( t a b l e  111). The same 
type of e f f e c t  can be noted f o r  compacts (specimens 21, 22, and 24). However, 
t h e  e f f e c t  of HC1 on as-cleaved na tu ra l  c rys t a l s  i s  t o  decrease t h e  conductiv
i t y  (specimens 1 6  and 1 7 ) .  The e f f e c t  of H20  (100 percent humidity) w a s  t o  
increase t h e  conductivity (specimen 14)  i n  much t h e  same manner as t h e  HC1. 
The e f f e c t  of C02 on all as-cleaved c r y s t a l s  (and presumably as-cut  compacts) 
w a s  to decrease t h e  conductivity by a de tec tab le  amount ( t a b l e  111, specimens 
11and 18). 

The e f f e c t  of secondary treatments ( t h e  second treatment of each specimen) 
subs tan t ia tes  t h e  general  re la t ionships .  A secondary treatment with HC1 of 
H20-treated specimen 14  has no e f f ec t .  Secondary treatments using H20 on 
specimens first t r e a t e d  with HC1 (specimens 10, 11, 13, 15, 16,  and 1 7 )  show 
no cons is ten t  e f f ec t .  Secondary C 0 2  treatments of HZO-treated specimen 23 and 
of HC1-treated specimens 21, 22, and 24 decrease t h e  conductivity enormously 
(but  not to a value lower than t h e  as-cleaved specimens). Secondary H20 t r e a t 
ment (specimen 1 2 )  and secondary H C 1  treatment (specimen 18) of C02-treated 
specimens increase t h e  conductivity by a l a r g e  fac tor .  Proceeding through 
table 111, one sees t h a t  subsequent treatments a l s o  support t h e  above general-

E231. One set of such treatments should bei t i e s  s t a t e d  f o r  t h e  value of Sl0 

par t i cu la r ly  noted ( f i n a l  treatment of specimens 16  and 1 7 ) ;  H C 1  treatments of 

previously C02-treated na tu ra l  c r y s t a l s  do increase t h e  conductivity.  


The conductivity of t h e  specimen t r e a t e d  with D20 showed t h e  same type of 
dependence on vapor pressure and temperature as d id  specimens with o ther  treat
ments (see eqs. (1)and ( 2 ) ) .  Thus, a comparison can again be made using t h e  
values a[231 and Si$33 as ca lcu la ted  according to appendix 13; t h e  values are 
l i s t e d  i n  t a b l e  IV. The values f o r  a[231 appear unusually constant;  t h e  
values of a[231 f o r  measurements i n  D20 vapor are over 10 percent higher  than 
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values f o r  measurements i n  H2O vapor. However, t h i s  va r i a t ion  i s  far  less than 
t h e  usual s c a t t e r  i n  table I1 and thus may not necessar i ly  be s igni f icant .  The 
data i n  t a b l e  I V  a l s o  show t h e  la rge  difference between S[231 f o r  D20 vapor and 

10
t h e  value f o r  H20 vapor. The conductivity of N a C l  i n  D20 vapor i s  about 8 t i m e s  
g rea t e r  than tha t  of N a C l  i n  H20 vapor. 

INTERPIIETATION 

3
Based on t h e  observed dependency of conductivity on treatments as w e l l  as 
recent  inves t iga t ions  by Otterson, e t  al. (refs. 1to 4) ,  t h e  chemistry of t h e  
surface of N a C l  i s  in t e rp re t ed  to be as follows. Surfaces of N a C l  when exposed 

Ito C02 (60 percent humidity) a r e  hydrolyzed and become contaminated with car
bonate. Values of conductivity after C 0 2  treatments are therefore  character
i s t i c  of a carbonate surface; such surfaces  are found to possess f o r  t he  most 
pa r t  t h e  lowest conductivity of the surfaces  measured. Since as-received N a C l  
:except na tura l  material) contains some sodium hydroxide (NaOH) (over 10 ppm), 
surfaces  a r e  eas i ly  converted t o  a carbonate-type surface by in t e rac t ion  with 
C02 present i n  t h e  atmosphere (even at  r e l a t i v e l y  low humidity). Depending on 
t h e  amount of exposure, an as-cleaved c rys t a l  could show a conductivity which 
approaches t h e  low value f o r  a carbonate surface.  Del iberate  treatment of such 
as-cleaved c rys t a l s  with C02 undoubtedly would add more carbonate and thus 
decrease t h e  conductivity as w a s  observed. As-cleaved na tura l  c rys t a l s  con
t a in ing  no detectable  NaOH do not r eac t  with t h e  C 0 2  present i n  the air  (perhaps 
due to low humidity) and thus do not exhib i t  t h e  low conductivity cha rac t e r i s t i c  
of carbonate surfaces.  For compacts, the  as-cut specimens exhib i t  a lower con
duct iv i ty  than specimens after subsequent C02 treatments;  t h i s  i s  in te rpre ted  t o  
ind ica t e  t h a t  t h e  GO2 treatment used w a s  not s u f f i c i e n t  to convert surfaces  of 
t h e  compacts completely to carbonate-type ones. The exposure of  t h e  powder 
(before compaction) t o  t h e  air  (containing C02) appears to be a more e f f ec t ive  
treatment f o r  t h e  formation of a carbonate-type surface.  

Treatment of t o t a l l y  or p a r t i a l l y  carbonate-covered surfaces  by H20 (100 
percent humidity) would remove t h e  carbonate by solut ion-type ab la t ion  and 
hydrolysis of t h e  surface.  The r e su l t an t  surface could be classed as a hydroxide-
type (OH-) surface.  Treatment of t he  carbonate-type surface with HC1 would 
result i n  a NaC1-type surface; however, during t h e  conductivity measurements 
exposure to even low H20 vapor pressure can cause hydrolysis,  r e su l t i ng  i n  an 
OH' surface. Thus, both H20 and HC1 treatments lead to t h e  same type of surface 
and a r e  expected to have t h e  same e f f e c t  upon conductivity,  as i s  found experi
mentally. This OH- surface exhib i t s  a r e l a t i v e l y  high conductivity. It should 
be noted t h a t  once an OH' surface i s  formed it should not be exposed to air les t  
t h e  C02 present t he re in  r eac t s  t o  form a carbonate surface.  

Following t h e  above type of reasoning, surfaces  of as-cleaved na tura l  crys
tals (containing no OH- and thus no carbonate) should show conductivity similar 
to those with HC1 treatments,  because with exposure to H20 vapor i n  the  conduc
t i v i t y  c e l l ,  t h e  surfaces  would convert to t h e  OH' type. Actually, t h e  surfaces  
show a conductivity s l i g h t l y  d i f f e r e n t  (higher) from t h e  OH- type; however, t h i s  
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is  not unexpected because t h e  na tu ra l  c rys t a l s  have a far d i f f e r e n t  overa l l  
pur i ty  (lower) than op t i ca l  or reagent-grade material. 

Because hydrolysis occurs r ead i ly  on a N a C l  surface,  it i s  l o g i c a l  t h a t  
treatment of an OH- surface with D20 even below t h e  sa tura t ion  point  should 
cause through chemical exchange t h e  formation of a deuteroxide (OD-) surface 
possessing d i f f e ren t  conductivity than t h e  OH- type. Experimentdly it is  
found t h a t  t h e  OD‘ surface has t h e  higher conductivity of t h e  two. Thus one 
can a t t r i b u t e  t h e  difference between t h e  values of f o r  H20 and D20 t o

L. 

t h e  surface chemical condition and not to t h e  nature of t h e  molecules absorbed 
on t h e  surface. 

t 

One may say, i n  general, t h a t  treatments have t h e  e f f e c t  of generating 
e i t h e r  a carbonate, OH-, or OD‘ surface. Even though a N a C l  surface ex i s t s ,  
i t s  conductivity i s  not measurable i n  t h e  present inves t iga t ion  because of t h e  
hydrolysis occurring during t h e  ac tua l  conductivity measurements (H2O being 
present) .  Table V i s  a summary of t h e  da ta  (average S[Z3’ for H20 and D

2
0 t o  

comparison of SJg3] i s  equivalent to a comparison of So (as explained i n  
appendix By last paragraph), one may wr i te  

So (OD- surface)  > So (OH- surface)  >> So (carbonate surface)  

An addi t iona l  comparison t h a t  can be made i s  one between t h e  values of 

[231 f o r  t h e  various specimens. To ensure chemical uniformity, t h e  specimens
3 0  
should be compared under t h e  same chemical condition, (e.g. ,  after t h e  first 

H C 1  treatments ( t a b l e  111). No dependence of on t h e  shape of t he  speci
men w a s  found, but  t he re  w a s  a dependence on t h e  type of  specimen. A l l  s i ng le  

c rys t a l s  (S. C. ) have much t h e  same value f o r  S!g3’ ,  with t h e  melt-grown speci
mens having s l i g h t l y  higher values of S;g3’ than t h e  na tura l  material .  The 
s c a t t e r  within e i t h e r  group i s  n o t  l a r g e  except f o r  specimen 18. The compacts 
exhib i t  conduct ivi t ies  over 2 orders of magnitude g rea t e r  than t h e  s ing le  crys
tals; t h i s  can be a t t r i b u t e d  to t h e  l a rge  roughness f ac to r s  undoubtedly present 
i n  such compacts. The comparison of t h e  conduct ivi t ies  as a function of t h e  
type of specimen can a l s o  be made with t h e  a i d  of t h e  summary i n  t a b l e  V. Fi
nal ly ,  t he  comparisons can be expressed i n  terms of So (see  appendix By last 
paragraph): 

so (compact) >> so (melt-grown S. C. ) -> so (na tura l  S. C. ) 

Although t h e  purpose of t h i s  paper i s  not t o  discuss t h e  mechanism of t h e  
observed surface conductivity, a few comments should be made. The conclusions 
of t h i s  research are not dependent on t h e  type of conduction involved ( ion ic  o r  
e lec t ronic) ;  thus,  t h e  present work cannot be used t o  prove conclusively 
whether an ion ic  or e lec t ronic  mechanism i s  involved. However, i on ic  conduc
t i o n  might involve polar izat ion,  and t h i s  w a s  not observed. Furthermore, w e  

7 



bel ieve  t h a t  t h e  d i f fe rence  i n  conductivity between an OH- surface and an OD’ 
surface can more eas i ly  be explained i n  terms of band theory than by simple 
ion ic  conductance. On t h e  o ther  hand, s i n t e r i n g  experiments supply evidence 
t h a t  i on ic  mobili ty takes  place on N a C 1  at room temperature (refs. 10 and 11) 
when H20 or  HC1 vapor i s  present. 

Lewis  Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 1, 1965. 
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APPENDIX A 

1NTliXE"TmION O F  EXPERIMENTALLY FOUND EQUATION 

It i s  des i rab le  to give fu r the r  i n t e rp re t a t ion  to equation (1) 

log  s p 1  = log so + ccLt1.P 

4 
The first observation i s  of course t h a t  So can be in te rpre ted  as t h e  conduc
t i v i t y  of a water-free surface.  As water i s  absorbed, aggregates of water 
having less res i s tance  than t h e  underlying surface a c t  as shor t - c i r cu i t  elements 
and decrease t h e  ove ra l l  res is tance.  (If absorbed w a t e r  a c t s  only as a short-
c i r c u i t  medium, simple adsorption of D20 should have e s sen t i a l ly  t h e  i d e n t i c a l  
e f f e c t  on conductivity as does the adsorption of H2O.) To a first approxima
t i o n ,  t h e  res i s tance  R p '  of t h e  c rys t a l  may be expressed as 

R E 1  = Ro(l - f) 

where % i s  the res i s tance  of a water-free surface and f i s  t h e  f r ac t ion  of 
surface containing the  sho r t - c i r cu i t  elements. Then, by rearrangement and sub
s t i t u t i o n  of conductivity f o r  res i s tance ,  one can obtain:  

log P 
= l og  so - l o g ( 1  - f) 

Combining equations (1)and (AZ), 

a [ t l . P  = - log ( l  - f) 

Differen t ia t ing ,  

or 


($)T = 2.303 a[t](l - f) 

Equation (As) i s  a reasonable re la t ionship;  it states t h a t  t h e  rate of change of 
t he  sho r t - c i r cu i t  f r a c t i o n  with pressure is  proportional to t h e  uncovered sur 
face. Ehpir ical ly ,  a [ t ]  i s  shown to be a very rap id ly  changing function of t e m 
perature.  
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APPENDIX B 

CALCULATION O F  s g 3  

For ease of comparison of t h e  abundant data ,  it w a s  convenient to ca lcu la t e  

and compare a s ing le  value of a [ t ]  and a s i n g l e  value of S p 1  f o r  a l l  t r e a t 
ments. The values se lec ted  were those a t  23O C and 10- tor r  water pressure,  a[23]  ,
and S[23] .  A comparison of t he  values of So would have had t h e  advantage of

10 
being temperature independent ( see  text proper) ,  but  So i s  a highly extrapo

l a t e d  value ( see  f i g .  2 ) ;  i n  cont ras t ,  i s  an in t e rpo la t ed  value. The 
in t e rpo la t ion  procedure w i l l  now be described. 

The values of a [ % ]  and So were ca lcu la ted  f o r  all nominally 23' C 
(296.2' K) runs by t h e  least squares method; t h e  temperature of these  runs 
never var ied more than 2' from 23' C. The value of a [ 2 3 1  could therefore  be 
calculated:  

The use of T9 or TI3 i n  place of TI1 would have made only a 3 percent d i f 

ference i n  t h e  value of a [ 2 3 ] .  Using a [231 ,  can be found as follows: 

This equation i s  equivalent t o  

and thus does not involve t h e  extrapolat ion e r r o r s  inherent  i n  t h e  value of 
SO' 

[23  1A comparison of t h e  e f f e c t s  of chemical treatment on t h e  values of Sl0 
i s  equivalent t o  a comparison involving So because t h e  value of a [ t ]  i s  not 
a funct ion of t h e  chemical treatments ( see  f i r s t  f u l l  paragraph a f t e r  eq. ( 2 ) ) .  
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TABLE I. - EFFECT OF TR" ON a[23] 

[Specimens were melt-grown single crys
tals; treatments were performed in the 
sequence presented; a blank space in
dicates that a particular treatment 
was omitted from the sequence.] 

Treatment 


As cleaved 


H C 1  


HZ O 

CO2 

H20 

co2 

HC1 


H2O 


CO2 

HC1 


H2° 

Specimen 10 


0.47 


.62 


.56 


.59 


.46 


.54 


.77 

.65 


.78 


.70 


~ 

Specimen 11 


0.62 


.55 


.54 


.69 


.72 

.73 

.61 


.91 


.78 
-. 
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TABLE 11. - VALUES OF a[23] 

3pecimen [ncrease, 

torr- '  percent 

10 


11 


12 


13 


14 


15 


16 


17 


18 


21 


22 


23 


24 


IS cleaved 

~ 

0.47 

.62 


.58 


.60 


.52 


.58 


.46 


.49 


.77 


.48 


.50 


.42 


.47 


~~ 

Average for a l l  
treatment 

0.62 


.69 


.73 


.63 


.84 


.83 


.72 


.74 


.76 


.73 


.71 


.68 


.70 


35 


12 


25 


5 


62 


44 


58 


52 


-1 


55 


44 


62 


48 


Jverage 0.54 0.72 44 
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P 

Treatment -log Sf:’] for specimen indicated 1- 1 
Single crystals (melt-grown) Single crystals (natural) Compacts (melt-grown Compact (re


material) agent grade) 


10 11 12  13 14 15 16 17  18 2 1  22 1 2 3  1 24 1 
None (as 13.68 14.34 14 .28  13 .71  13.79 14 .51  12.68 12 .28  8.73 13.12 
cleaved) b(13.84)  b(12. 86) 

10.17[11( 11.14 ~ 9*57[i~1 

co2 13.50 ~ 13.59 ~ 1 4 . 5 2  ~ 1 3 . 6 9  113.94 115.11 115.40 114.65 111.60 111.06 [2  

H2° 12.78 I I13.85 I13.16 I I I 
HC1 11.86 112.18 112.10 112.40 112.40 112.60 12.22 113.05 112.36 1 9.64 11.00 I 7.74 I 8.78 

“Treatments were performed in the sequence presented; a blank space indicates that a particular treatment was omitted from the 
sequence; for easier reference, [ l ]  indicates initidl treatment and [ 2 ]  indicates second treatment. 

bNumbers in parenthesis are rerun values. 




TABLE IV. - COMPARISON OF THE EFFECTS 

OF H20 AND D20 (SPECIMEN 14)  

Treatment 

100 percent D20 
humidity 

100 percent H 2 0  
humidity 

(4 
100 percent D20 

humidity 

(4 
100 percent H20 

humidity 

aNo addi t iona l  treatment.  

[ 2 3 jTABLE V. - 4VERAGE VALUES OF log Sl0 

s~:'I f o r  various types of sampleECondition of surface -log 

Melt -grown Natural Compacts 
s ing le  c r y s t a l s  s ing le  

crysta lsa  
~~ ______ 

A s  cleaved 14.05 12 .48  12 .60  

Carbonate sur face  14 .16  15 .02  11.22 

OH- sur face  12 .82  13.04 10.30 

OD' sur face  12 .26  

aSpecimen 18 not  used i n  averages. 
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I 
I Pump \To reservoir  I 


‘-To manometer 1 CD-8277 


Figure 1. - Schematic of conduct iv i ty apparatus. 
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I d 
0 2 4 6 8 10 12 14 16 18 M 22 

H p  vapor pressure, torr 

Figure 2. - Conductivity as function of pressure (specimen 12; H20 treated). 

I I I 
2.47 2.48 2. 49 2.50 

Log T 

Figure 3. - Dependence of ab] on temperature (specimen 12; H$ 
treated). 
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-lor


5 7 

H20 vapor pressure, torr 


Figure 4. - Effect of HCI t reatment (specimen 11; temperature, 24. 1' C). 

8 10 12 14 

H$I vapor pressure, t o r r  


Figure 5. - Effect of C02 treatment (specimen 12; tem
perature, 24.0" C). 

18 NASA-Langley, 1966 E-3158 
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